If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+6x=72
We move all terms to the left:
2x^2+6x-(72)=0
a = 2; b = 6; c = -72;
Δ = b2-4ac
Δ = 62-4·2·(-72)
Δ = 612
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{612}=\sqrt{36*17}=\sqrt{36}*\sqrt{17}=6\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{17}}{2*2}=\frac{-6-6\sqrt{17}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{17}}{2*2}=\frac{-6+6\sqrt{17}}{4} $
| ((1.72*10^-8)*180)/x=1.33 | | -w+4(w+3)=31 | | ((1.72*10^8)*180)/x=1.33 | | ((1.72*10-8)*180)/x=1.33 | | 5+-5x+-5x=-5+5x+-5x | | 100=2a | | 2(x+2)-(9x-3)=5 | | n-500+n+150+500=358+1/3 | | n-500+n+150+500=358.33 | | 3(t-12N)=27 | | 1/x+2/(x+1)=5/6 | | n=6n-3 | | (34.5)x=1000 | | (n-500+n=150+500)/3 | | -63(2k+4)=-18 | | 2y+41=5y+48 | | 90+90+3x+2x-30=360 | | 3x-4+x^2=0 | | 9090+3x+2x-30=360 | | ∣2t+6∣∣=4 | | x-5.3=10.5 | | 9a=4a+20 | | 3(2x+3)=11+7-5x+2 | | 2x/7+5=13 | | 1.2-0.4x^2=0 | | a1=5(1)+5 | | p/9=5/3 | | 6(2x-9)=4(3x+1) | | n/2(168+3n-3)=250 | | 25x-100=75+10 | | 5m-2=-11 | | 5p+1=17-3p |